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Qinggong Ding2, Guannan Hu2, Wenhao
Zhu2, 5, Jiong Yang3, Zhiguo Lu4, Wu Zhang2, 3

Abstract. Due to the urgent requirement of novel materials, materials computing, which can
be used to predict properties without investment of real experiment, is becoming a hot research
topic. Available materials platforms are usually implemented in a fully integrated way. That is,
computing tasks submitted in these platforms are dispatched to a private cluster to ensure the
integration of result data. Such kind of integration could be essential for materials discovery,
however, the use of a private cluster also introduces the limitation of computing capability, which
will make the platform inefficient. In this paper, a Materials Computing Platform is introduced.
Computation efficiency could be largely improved by dispatching computing tasks to user side
clusters instead of server side ones. Meanwhile, an integrated data storage is implemented along
with the platform to ensure the integration of data. Additionally, computing templates are used to
enhance platform usability and users can carry out high-throughput computing tasks with simple
setup steps.

Key words. Materials platform, materials computing platform, materials discovery, task
dispatch..

1. Introduction

Research methods of traditional materials science are to develop research con-
tents, work steps and experimental means according to specific goals, and then, use
mathematical methods to analyze and process the resulting data from experiments.
Scientific report and mathematical models may be established via such a research
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work flow.
Clearly, this kind of flow may involve of expensive and time consuming experi-

ments along with huge investments. With the rapid development of computer tech-
nology, materials computing is becoming an alternative way of material research. On
basis of that, it has become an important supplementary ways of material design
that adopting supercomputers (usually computing clusters) to simulate the com-
position, structure, performance and service performance of materials with certain
compositions and structures and then using simulation results to assist material dis-
covery. As a result of integration, a lot of material computing and data platforms
are proposed.

These platforms, e.g. Materials Project (MP) [1], Automatic-FLOW (AFLOW)
[2], etc., which not only provide searching and downloading of computational data,
but also provide data analysis and services of high-throughput material computing
[3]–[5], are usually based on Browser/Server architecture. With the help of mate-
rial computing platforms, high-throughput material computing can be carried out.
The iteration of the trial-and-error material development process can be repeated
recursively and automatically according to user request. During the iterations, char-
acteristics with certain physical property and microstructure can be ’designed’ based
on data analysis of calculation result. Such kind of high-throughput process will sig-
nificantly speed up material discovery and reduce the costs.

Obviously, data plays a vital role in the high-throughput computing process.
Thus, in order to achieve standardized storage and efficient search, existing platforms
are generally designed as a centralized structure. Most of these platforms regard a
certain supercomputer as its calculation support to ensure the centralized usage and
the retrieval of data. Although this architecture design can ensure the centralized use
of data to certain extent, it may bring about the problem of insufficient computing
resources. In other words, computing resources integrated inside of the platform
may not be able to meet the needs of large-scale computing.

Regarding to this problem, this paper proposes a Data-Centered Materials Com-
puting Platform (DCMCP) with distributed task dispatching. The platform is based
on ADDS model (Automation, Data, Dispatch and Sharing), which implements a
distributed dispatch of material calculation tasks around a data center. Based on
the data center, the platform allocates calculation tasks for each computing cluster
with automatic concurrency module of distributed process, and then imports the
result data from each cluster to data center through user configuration interface.

2. The ADDS model for material simulation

The aim of this chapter is to introduce the ADDS model, as shown in Fig. 1, to
analyse the model rationality and the impetus for material simulation from both
theoretical and technical aspects.
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Fig. 1. ADDS model

2.1. Automated process

According to the workflow of material calculation task, including design auto-
mated submission, implementation, error detection and correction, the functional
requirements are illustrated as follows:

The first section is Web Interface. In DCMCP, users can perform material cal-
culations through the web services front-end page, including data query, calculation
task submission, cluster registration, calculation result download and calculation
task query, etc. The web daemon receives the user request, and then generates
the task after the specified web service transforms requests as instructed. Web in-
terface provides a simple and intuitive material simulation interface, thus blurring
the differences in computing environment and simplifying the operation of material
simulation.

The second section is Remote management. Remote management is divided
into two parts, one is the server program on central server, and the other part
is the client program on computing cluster. The server program distributes the
data and instructions to the specified client program and retrieved the calculation
results. The client program mainly contains the following functions: (1) Configuring
environment of material simulation. (2) Accepting and executing instructions. (3)
Performing submission, error detection and auto error correction of calculation task.
(4) Monitoring status of computing cluster.

The last section is Task Template. Most of the material calculation tasks have
the following main features: (1) Invoke multiple calls to the calculation software.
(2) Consistent internal logic in simulating the same property. (3) Require manual
calculation data and estimate through calculation process.

2.2. Data processing

The calculated and verified simulation data provides calibrations and inspirations
for new material calculation tasks. This part has two portions as follows:

A material calculation task produces a large number of data, including input
data, calculated result, and calculation task information. The number can reach to
hundreds of Mbyte. When the frequency of material calculation tasks reaches to tens
of thousands of magnitude, the total amount of data will be very large. At the same
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time, due to the diversity of software, calculation tasks and computing environments,
the isomerization of the data produced by the same kind of task is quite serious,
which indirectly raises the amount of data. Therefore, the key point of the storage
strategy is to address the massive and heterogeneous data properly. Distributed
storage system which is scalable can solve the above problems and improve the
speed of data searching [7].

2.3. Dispatching system

Due to fact that user’s computing clusters are treated as computing resources,
whether the calculation tasks and computing resources can be effectively dispatched
is the key to complete the calculation task quickly.

Distributed task dispatch module, consists of dispatching calculation tasks, op-
timization and processing of error calculation tasks. Dispatching calculation tasks
need to ensure high utilization of calculation resources and short run cycles of cal-
culation tasks. By using the general configuration of the same calculation task, the
calculation task optimization strategy is to modify the input parameters of the cur-
rent calculation task such as the number of CPU core, the memory size, precision,
convergence steps, etc. to speed up the execution of calculation tasks, and reduce
calculation errors. For processing of error calculation tasks, we encode them as an
error correction program by a large number of correct input parameters of calcula-
tion tasks and the consensus experience of the material researchers, and the error
signals returned by the template objects are inputs of the program.

2.4. Sharing

In addition to the basic data sharing, the distributed material calculation has
calculation resources sharing. Whether data and calculation resources in the same
format can be used by more people, standardization is the key point.

Standardization is beneficial t o d ata s haring a nd t he g eneration o f n ew data, 
and related work has been launched. For example, MP uses the Python Materials 
Genomics package to store material data in the same format [6]. Another example 
is NoMaD [8], who stores its data in xml, JSON format. Because most of material 
calculation software have become commercial, therefore, some users’ computers are 
unable to implement material simulations. Thus, sharing resources is very meaning-
ful for most people. Standardizing data and computing resources can dramatically 
improve the efficiency of material calculation and data search.

3. DCMCP framework

DCMCP is built based on the ADDS model and its task is to provide distributed
material calculations, data search and cluster registration services, as shown in Fig. 2.
DCMCP consist of four independent subprojects. The first project is the web inter-
face. The second project is data standardization and storage. The third project is
the remote management program based on C/S model. The last one is the function



DISTRIBUTED TASK DISPATCHING COMPUTING PLATFORM 5

template.

Fig. 2. DCMCP framework

3.1. Web interface

The web interface provides users with an operator GUI so that users can perform
data interaction. And it offers cluster registration, searching and task submission
services. Cluster registration requires information about SSH login and the environ-
ment information of computing clusters such as queue systems, computing software,
etc. Search includes the task query and the data search. The task query is visu-
alizing the calculation progress of user’s tasks based on the calculation information
fed back by the function template. The data search returns the data under user’s
request, then uses Jsmol to visualize the structure data. Task submission consists
of function template selection and initial data input.

3.2. Data standardization and storage

In DCMCP, using standardization module to standardize the input files, pro-
cess information, and calculation results, then store the data in the mongod of the
MongoDB cluster in json format. Then, providing users with download services and
visualized data through the web interface.

DCMCP uses the MongoDB sharded cluster to store massive and heterogeneous
data files. For the massive and heterogeneous data generated by the calculations,
MongoDB sharded cluster enables fast data retrieval and large-scale data requests.
MongoDB sharded cluster, as shown in Fig. 3. Mass data is stored in sharding, and
multiple shards can be retrieved simultaneously to speed up data retrieval. Sepa-
rating data storage and retrieval services can increase the number of simultaneous
retrieval requests and enhance data security and cluster scalability.

3.3. Remote management program

DCMCP Server and DCMCP Client are core components of the automatic pro-
cessing and dispatching system. DCMCP Server combines standardized data of
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Fig. 3. Framework of MongoDB sharded cluster

calculation tasks and the function template into a completed calculation task, and 
calls the dispatching module to dispatch the calculation task dispersedly. Adopt-
ing the paramiko module of python to establish the network connection between the 
DCMCP server and the DCMCP client. Paramiko module follows the SSH2 protocol 
and supports remote connection to the cluster in an encrypted and authenti-cated 
manner. The DCMCP Client is responsible for submitting tasks, monitoring tasks 
and resources on the computing cluster. The DCMCP Client submits the cal-
culation tasks and obtains the computing resources information through the queue 
system (e.g. LSF, PBS, etc.). At the same time, it uses the Custodian (an error 
correction module of MP) to correct the errors caused by the calculation inputs.

3.4. Function template

The function template contains researchers’ material calculation experience, which
is Python template objects based on the implementation process of specific mate-
rial calculation tasks. Based on several VASP implementation processes of mate-
rial calculation tasks, several function templates have been generated, including the
structure relaxation template, as shown in Fig. 4, the static calculation template, the
band calculation template, etc. The standardized data of calculation tasks is the
input parameter of the object template so that constituting a completed calculation
task.
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Fig. 4. Structure relaxation template

4. Conclusion

Existing material computing and data platforms, such as AFLOW and MP, both
take single supercomputer as a calculation support to execute high-throughput ma-
terial computing. In this design pattern, these platforms do not share computing
resources and high-throughput computing code, resulting in the external users can
not directly use these platforms to implement high-throughput computing, and then
affecting the computing efficiency and resource utilization of platforms.

Concerning this question, in this paper we proposed a DCMCP platform which
supported by the users’ computing clusters. Based on function templates and web
GUI, it has reduced material computing demands of computer hardware and user’s
computer operational difficulty, which make the material calculation process and the
environment more open to users. The combination of distributed material comput-
ing and MongoDB sharded clusters not only improves computing speed, but also
increases material data capacity and speeds up data retrieval. DCMCP has set up
a MongoDB cluster with seven storage nodes to store 130,000 VASP calculations.

In the future work, machine learning and data mining methods would be applied 
to train classification models [9]–[11] so that discover the rules that may exist in 
the material data. Designing a calculation program of dopant material, and the 
program can find the most suitable structure data under the calculated results of all 
doping structure. Furthermore, DCMCP will be compatible with more calculation 
software to broaden the research area.
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